МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ЦЕНТР ОБРАЗОВАНИЯ №15»

АННОТАЦИЯ

к курсу

«Геометрия»

(для 10-11 классов образовательных организаций)

Рабочая программа предмету геометрия для 10-11 классов составлена на основе Федерального государственного образовательного стандарта основного общего образования по математике, утвержденного приказом Министерства образования и науки Российской Федерации от 17 декабря 2010г (№1897), примерной программы среднего общего образования по математике и авторской программы по геометрии Л.С.Атанасяна, входящей в «Сборник рабочих программ. 10-11 классы. Геометрия», составитель: Т.А. Бурмистрова. М.: Просвещение.

Рабочая программа составлена к учебнику «Геометрия 10-11 класс(базовый уровень) »Атанасян Л.С., Бутузов В.Ф,2020г.

В соответствии с учебным планом школы на изучение геометрии в 10 и 11 классах отводится по 34 часа из расчета 2 часа в неделю. Такое количество часов соответствует количеству часов предусмотренных Федеральным базисным учебным планом для образовательных учреждений Российской Федерации.

Изучение геометрии в 10-11 классе на базовом уровне направлено на достижение следующих целей:

- •развитие логического мышления, пространственного воображения и интуиции, критичности мышления на уровне, необходимом для продолжения образования и самостоятельной деятельности в области математики и её производных, в будущей профессиональной деятельности;
- •воспитание средствами геометрии культуры личности: отношения к математике как части общечеловеческой культуры.
- •развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
- •овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки.

Программа построена по тематическому принципу в полном соответствии с авторской программой. Учебный процесс реализуется в урочной форме.

Программой предусмотрены следующие формы контроля:

- •Фронтальная
- •Групповая

•Индивидуальная

•Комбинированная

Кроме того предусмотрен тематический контроль в форме письменных самостоятельных (обучающих, диагностических и контролирующих) и контрольных работ. После каждой темы предусмотрен контроль в виде зачётов.

Подобный выбор форм позволяет осуществлять контроль на всех этапах изучения материала.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ

выпускников по геометрии

Курс геометрии 10 - 11 классов нацелен на обеспечение реализации и дает возможность достижения трех групп образовательных результатов:

Личностные результаты:

- включающих готовность и способность обучающихся к саморазвитию, личностному самоопределению и самовоспитанию в соответствии с обще-человеческими ценностями;
- сформированность их мотивации к обучению и целенаправленной познавательной деятельности, системы значимых социальных и межличностных отношений, ценностно-смысловых установок;
- способность ставить цели и строить жизненные планы;
- готовность и способность к самостоятельной, творческой и ответственной деятельности;
- навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других

видах деятельности;

- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни;
- сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности.

Метапредметные результаты:

- включающих освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные);
- самостоятельность в планировании и осуществлении учебной деятельности и организации учебного сотрудничества с педагогами и сверстниками;
- способность к построению индивидуальной образовательной траектории, владение навыками учебно-исследовательской, проектной и социальной деятельности;
- умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность;
- использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности;
- выбирать успешные стратегии в различных ситуациях;
- умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем;
- способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;

- готовность и способность к самостоятельной информационно- познавательной деятельности, включая умение ориентироваться в различных источниках информации,

критически оценивать и интерпретировать информацию, получаемую из различных источников;

- умение использовать средства информационных и коммуникационных технологий (далее – ИКТ) в решении когнитивных, коммуникативных и организационных задач с

соблюдением требований эргономики, техники безопасности,

гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

- владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания,

новых познавательных задач и средств их достижения.

Предметные результаты:

- -включающих освоенные обучающимися в ходе изучения учебного предмета умения, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях;
- формирование математического типа мышления, владение геометрической терминологией, ключевыми понятиями, методами и приёмами;
- сформированность представлений о математике, о способах описания на математическом языке явлений реального мира;
- сформированность представлений о математических понятиях, как о важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления;

понимание возможности аксиоматического построения математических теорий;

- владение методами доказательств и алгоритмов решения;
- умение их применять, проводить доказательные рассуждения в ходе решения задач;
- владение основными понятиями о плоских и пространственных геометрических фигурах, их основных свойствах;
- сформированность умения распознавать на чертежах, моделях и в реальном мире геометрические фигуры;
- применение изученных свойств геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием;
- владение навыками использования готовых компьютерных программ при решении задач.

Выпускник научится:

- •Понимать аксиомы о взаимном расположении точек, прямых и плоскостей в пространстве;
- •Применять аксиомы стереометрии их следствия при решении задач.
- Определять взаимное расположение 2-х прямых в пространстве;
- Доказывать теоремы о параллельности прямых параллельности 3-х прямых;
- Закреплять эти понятия на моделях куба, призмы, пирамиды;
- Вводить понятие параллельности прямой и плоскости;
- Определять взаимное расположение прямой и плоскости в пространстве;
- Применять изученные теоремы к решению задач;
- Доказывать признак и свойства скрещивающихся прямых;

- Находить углы между прямыми в пространстве;
- Доказывать признак параллельности двух плоскостей;
- Формулировать свойства параллельных плоскостей;
- Применять изученные свойства параллельных плоскостей при решении задач;
- Вводить понятие тетраэдра, параллелепипеда;
- Решать задачи, связанные с тетраэдром и параллелепипедом;
- Строить сечения тетраэдра и параллелепипеда.
- Вводить понятие перпендикулярных прямых в пространстве;
- Доказывать лемму о перпендикулярности двух параллельных прямых к третьей прямой;
- Давать определение перпендикулярности прямой и плоскости;
- Доказывать признак перпендикулярности прямой и плоскости;
- Применять признак перпендикулярности прямой и плоскости к решению задач;
- Доказывать теорему существования и единственности прямой, перпендикулярной плоскости;
- Решать задачи основных типов на перпендикулярность прямой и плоскости;
- Доказывать теорему о трех перпендикулярах, применять теорему при решении задач;
- Решать задачи в которых используется понятие угла между прямой и плоскостью;
- Вводить понятие двугранного угла и его линейного угла, решать задачи на применение этих понятий;
- Находить угол между плоскостями;
- Вводить понятие перпендикулярных плоскостей;
- Доказывать признак перпендикулярности двух плоскостей, применять этот признак при решении задач;
- Вводить понятие прямоугольного параллелепипеда, формулировать свойства его граней, двугранных углов, диагоналей;
- Решать задачи на свойства прямоугольного параллелепипеда.
- Вводить понятие многогранника, призмы и их элементов;
- Определять виды призм, вводить понятие площади поверхности призмы;
- Выводить формулу для вычисления площади поверхности прямой призмы;
- Вводить понятие пирамиды, решать задачи связанные с пирамидой;
- Вводить понятие правильной пирамиды;
- Доказывать теорему о площади боковой поверхности правильной пирамиды;
- Решать задачи, связанные с правильной пирамидой;
- Вводить понятие «правильного многогранника»;
- Решать задачи на правильные многогранники.
- Вводить понятие вектора в пространстве и равенства векторов и связанные с этим понятием обозначения;
- Понимать правила треугольника и параллелограмма сложения векторов в пространстве, законы сложения векторов;
- Применять два способа построения разности двух векторов;
- Применять правило сложения нескольких векторов в пространстве при нахождении векторных сумм, не прибегая к рисункам;

- Применять правило умножения вектора на число и основные свойства этого действия при решении задач;
- Давать определение компланарных векторов;
- Применять признак компланарности трех векторов и правило параллелепипеда, сложение трех некомпланарных векторов;
- Понимать теорему о разложении вектора по трем некомпланарным векторам.
- Вводить понятие прямоугольной системы координат в пространстве;
- Строить точку по заданным ее координатам и находить координаты точки, изображенной в заданной системе координат;
- Выполнять действия над векторами с заданными координатами;
- Вводить понятие радиус-вектора произвольной точки пространства;
- Доказывать, что координаты точки равны соответствующим координатам ее радиус-вектора, а координаты любого вектора равны разностям соответствующих координат его конца и начала;
- Применять формулы координат середины отрезка, длины вектора через его координаты и расстояния между двумя точками;
- Вводить понятие угол между векторами и скалярного произведения векторов;
- Применять формулу скалярного произведения в координатах и свойства скалярного произведения;
- Вычислять скалярное произведение векторов и находить угол между векторами по их координатам;
- Вводить понятия движения пространства и основные виды движений.
- Вводить понятие цилиндрической поверхности, цилиндра и его элементов (боковая поверхность, основания, образующие, ось, высота, радиус);
- Выводить формулы для вычисления площадей боковой и полной поверхности цилиндра;
- Вводить понятие конической поверхности, конуса и его элементов (боковая поверхность, основание, вершина, образующие, ось, высота), усеченного конуса;
- Выводить формулы для вычисления площадей боковой и полной поверхности конуса и усеченного конуса;
- Решать задачи на нахождение элементов цилиндра и конуса;
- Вводить понятие сферы, шара и их элементов (центр, радиус, диаметр);
- Рассматривать возможные случаи взаимного расположения сферы и плоскости;
- Применять формулу площади сферы при решении задач.
- Вводить понятие объема тела;
- Применять свойства объемов, теорему об объеме прямоугольного параллелепипеда при решении задач;
- Применять следствие об объеме прямой призмы, основанием которой является прямоугольный треугольник при решении задач;
- Применять теоремы об объемах прямой призмы и цилиндра при решении задач;
- Понимать возможность и целесообразность применения определенного интеграла для вычисления объемов тел;
- Применять формулу объема наклонной призмы с помощью интеграла при решении задач;
- Применять теорему об объеме пирамиды и, как следствие, формулу объема усеченной пирамиды при решении типовых задач;
- Решать типовые задачи на применение формул объемов конуса и усеченного конуса;
- Применять формулы объема шара и площади сферы при решении задач.

Выпускник получит возможность научиться:

- •Доказывать признак параллельности прямой и плоскости;
- •Самостоятельно выбирать способ решения задач.
- Доказывать теоремы, в которых устанавливается связь между параллельностью прямых и их перпендикулярностью к плоскости;
- Совершенствовать навыки решения задач.
- Развивать творческие способности, познавательную активность;
- Решать задачи на вычисление площади поверхности произвольной пирамиды.
- Совершенствовать навыки выполнения действий над векторами;
- Решать задачи повышенной сложности.
- Решать стереометрические задачи координатно-векторным способом;
- Использовать скалярное произведение векторов при решении задач на вычисление углов между двумя прямыми, а также между прямой и плоскостью.
- Выводить уравнение сферы в заданной прямоугольной системе координат
- Доказывать теоремы о касательной плоскости к сфере.
- Доказывать теоремы об объемах прямой призмы и цилиндра;
- Выводить формулу объема наклонной призмы с помощью интеграла;
- Выводить формулу объема усеченной пирамиды;
- Доказывать теорему об объеме конуса и ее следствие, в котором выводится формула объема усеченного конуса;
- Вывести формулы объема шара и площади сферы при решении задач;
- Использовать формулы для вычисления объемов частей шара шарового сегмента, шарового слоя и шарового сектора.

Содержание тем учебного курса.

10 класс

Ввеление.

Предмет стереометрии. Основные понятия стереометрии (точка, прямая, плоскость, пространство) и аксиомы стереометрии. Первые следствия из аксиом.

Параллельность прямых и плоскостей

Пересекающиеся, параллельные и скрещивающиеся прямые. Параллельность прямой и плоскости, признак и свойства. Угол между прямыми в пространстве. Перпендикулярность прямых.

Параллельность плоскостей, признаки и свойства. Параллельное проектирование. Изображение пространственных фигур.

Тетраэдр и параллелепипед, куб. Сечения куба, призмы, пирамиды.

Перпендикулярность прямых и плоскостей

Перпендикулярность прямой и плоскости, признаки и свойства. Перпендикуляр и наклонная. Теорема о трех перпендикулярах. Угол между прямой и плоскостью. Расстояние от точки до плоскости. Расстояние

от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.

Перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла. Площадь ортогональной проекции многоугольника.

Многогранники

Понятие многогранника, вершины, ребра, грани многогранника. Развертка. Многогранные углы Выпуклые многогранники. Теорема Эйлера.

Призма, ее основание, боковые ребра, высота, боковая и полная поверхности.

Прямая и наклонная призма. Правильная призма.

Пирамида, ее основание, боковые ребра, высота, боковая и полная поверхности. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрия в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая и зеркальная). Примеры симметрий в окружающем мире.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

11 класс

Цилиндр, конус, шар

Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усеченный конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.

Объемы тел

Объем прямоугольного параллелепипеда. Объемы прямой призмы и цилиндра. Объемы наклонной призмы, пирамиды и конуса. Объем шара и площадь сферы. Объемы шарового сектора, шарового сегмента и шарового слоя.

Векторы в пространстве

Понятие вектора в пространстве. Модуль вектора. Равенство векторов. Сложение и вычитание векторов. Коллинеарные векторы. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам Компланарные векторы. Разложение вектора по трем некомпланарным векторам.

Метод координат в пространстве. Движения

Координаты точки и координаты вектора. Скалярное произведение векторов. Движения.